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Potential Outcomes Framework

The potential outcomes framework phrases causality in the following way:

{Y(l) if T =1

Y(O) ifI'=20
The treatment effect for a unit 1 becomes:
Y, = Y1) - ¥(0)
Formally, we augment the random variable space of (7, Y) with (Y(1), Y(0))

Of course we never really observe the “counterfactual” - so what can we do?



Formal Definitions

» Denote by &, the (randomly) assigned set of units for which the treatment is applied

« We are aiming to estimate the Average Treatment Effect A:

A = E[Y(1) - Y,0)]

e Then we define the Difference in Means Estimator as:

N
T:Y.(1) — 1 -T)Y.(0
mizzllx) \%\Z( )Y,(0)



Regression Interpretation

Y = Y(0) + T(Y(1) — Y(0)) =

- Can be interpreted as regressing Yl on (LTi)

Y| T] =a+ A

» Of course we need not restrict ourselves to such simple regressions -

- Define a covariate X as a random variable which is independent of the treatment 1’
* Note this allows us to add any covariate observed *before™ the randomization

*\We can define the “Conditional Average Treatment Effect” (CATE) as:

A(X) =

E(Y(T) | X, =x,T; = 1] -

(Y(T) | X; = x,T; = 0]

» Then define the generalized Difference in Difference Estimator:

Y=a+TA+X' f+e



Problem with these estimators

 Amazon has an incredibly power-lawed set of data

* A few products contribute
to most of the revenue

O
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e Makes classical OLS a
really bad tool!
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What about in the real world?

» Traditionally the solution in supervised learning is to use Weighted Least Squares

» Key idea is to downweight large residuals in OLS to deal with the
heteroskedasticity that the power law induces

argmin | | Y — X7 3| > <4— OLS

argmin, || W%(Y— XT,BWLS)\ \% <+ \\LS

ﬁ WLS



What’s the issue with this?

Y=a+X'p +i
l [ FWLS VVZ

= fyrs = XWX)T'(XTWY)

 WLS produces biased estimates if the weights depend on the covariates!

[ Burs) — B = E[XTWX)"{(XTWY)] - j
= E[(XTWX)"' (X We)]
= Cov((XTWX)~1XTW, ¢)




What do we do?

 We can’t really estimate any causal effects with such power lawed data

 And we can’t magically believe (ala Pearl/Rubin etc) that we can wish away
the bias

 But, we do work at a tech company

e Which means we have a LOT of randomized trials. Can we use those In
anyway to fit more complex “causal” models?



So how do we perform Model Selection?

Treat one split as “in-sample”, treat the other as out of sample

Train a model on “in-sample”, and test it “out of sample”



Theorem: Sample Splitting is a valid procedure

Theorem [Tripuraneni, Joncas, M., Foster, Jordan '22]:
Consider two estimators A and B of the ATE A. If T, C are independent and 7', 75,C,

(, are independent then we have that:

"[(AA(TP C1) — ADM(Tza Cz))z] —

* |mplications:

C[(AR(Ty, C) — App(Th, Cy))*] =

C[(A (T, C)) = App(Ts, C1=E[(A(T,, C)) — Apy(Ty, Cy))]

* We can rank *causal® estimators based on their out of sample performance
 We can train complex (possibly biased) estimators as our causal models of the world
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Win Table for Different Estimators
On 800 Amazon Supply Chain Trials

* We see how often one estimator wins against the other (Borda counts)

Method dm mom1000 gen dd gen dd wl dm wins.001

dm X (-3.58, 0.000363) | (-12.68, 2.38e-33) | (-22.36, 3.6e-84) | (-28.19, 7.99¢-118)
mom1000 (3.58, 0.000363) | x (-2.12, 0.0342) (-11.89, 7.32e-30) | (-13.51, 3.78e-37)
gen dd (12.68, 2.38e-33) | (2.12, 0.0342) X (-21.1, 4.73e-77) | (-19.01, 2e-65)
gen dd wl | (22.36, 3.6e-84) (11.89, 7.32e-30) | (21.1, 4.73e-77) X (-0.26, 0.794)

dm wins.001 | (28.19, 7.99e-118) | (13.51, 3.78e-37) | (19.01, 2e-65) (0.26, 0.794) X

* |Implying:
gen dd wl wins.001 > gen dd wins.001 >

dm wins.001 ~gen dd wl >gen dd >
mom1000 > dm



Decision Making for Randomizations

 When we’re running a Supply Chain (or search engine, or social media site),
mere estimation is not enough

 What we actually want to optimize is the decision to launch a new policy or
not. This is a “meta” policy

» Consider a Decision Policy for a new product (/) D;. We wish to optimize
across a series of product decisions

argmax,, S(A,A) = argmax,, Z AD(A))
1eProducts



Can we use sample splitting for decision making?

» Simple procedure: Estimate ﬁI(AA(Tl, C,)) for some estimator A

 Evaluate the “reward” from the sample splits A 1om(15, )

e Giving us the following:

SAp= ) AT CHDA (T, C))
1eProducts



Theorem: Sample Splitting for launch decisions

Theorem [Tripuraneni, Joncas, M., Foster, Jordan '22]:
Consider two estimators A and B of the ATE A. If T, C are independent and 7', 75,C,

(, are independent then we have that:

[SADI-ESApl= ), A(EID(AD] - E[DAp)])
1eProducts

* |mplications:
 We can rank “launch” policies directly on their out of sample performance
By passes the need to worry about “when” to launch a product



Making optimal launch decisions

* Using an online bandit to make the decision works as well as anything basically

» Surprisingly, for Supply M ese y
Chain Data using a > oninere
t-value threshold of -1.2 is ) —

good!

it
e |ndicates the human effort N Ef

put in iIs worth every launch!
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Making optimal launch decisions

* Using an online bandit to make the decision works as well as anything basically

: - Gen. DD 3.
: - W. Gen. DD

w

o Surprisingly, for Supply Estimators

Chain Data using a
t-value threshold of -1.2 is
good!
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* Indicates the human effort . I N o — ' ‘ -
put in is worth every launch! T it T T it
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lI: Utilizing observational data



RL 1s hard!

. Sample complexity can be as large as min(|® [,2")

Dexterous Robotic Hand Manipulation
OpenAl, ‘19

» Large state/action spaces

* EXxploration

e Credit assignment problem



https://openai.com/blog/learning-dexterity/
https://openai.com/blog/learning-dexterity/

’\ Google DeepMind
Challenge Match

Real-world RL Is hard.

The core challenges Amazon
faces are sequential decision
making problems.

Can RL help in this space?
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RL 1s hard!

* Exploration and Credit Assignment are trying to solve the same problem

* | earning the “causal” structure of the world

» In RL notation: P[s,. | s, a,], R(s,, a,)

 The dependence on the action separates this from conventional supervised
learning



The Supply Chain Problem

 Supply Chain is about buying, storing, pricing,
and transporting goods.

) (-..‘:‘"‘.‘~"‘

......

Supply Chain Hurdles Will Outlast

« Amazon has been running it’s Supply Chain for ﬁa'zd?'."'c.’ White House Says
e administration’s economic advisers see climate change and
decades now

other factors complicating global trade patterns for years to come.

TE b Uty | e s e
o I T L T e A

 There is a lot of historical data Ehe New Lork Eimes
 How do we use it? me I s
« Concern: counterfactual issue?
. | How the Supply Chain Crisis
e This talk: how can we use this data to solve the Urlzfoly ded
inventory management problem?

. | | NS ~ A



A practical approach to Real-Worid RL

 Some problems inherently duck the counterfactual issue

* |f our actions don’t really affect the world, we can ignore causality and frame
the problem as “supervised learning”

e This is what “ExoMDP”s do



Warm up: Vehicle Routing

(when using historical data might be ok)

* We want a good policy for routing

a single car.
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Warm up 2: Fleet Routing

e We want to route a whole fleet
of self-driving taxis.

e Policy & features -> directions
* features:
customer demand, time of day,
holiday indicators, current traffic, sports games,
accidents, location, weather...

* Historical Data:
suppose we have logged historical data of features

* Backtesting policies:
 Key idea: a small fleet route may have small affects on traffic.
 (Counterfactual: with the historical data, we can see what would have happened with
another policy.



Supply Chain Data

Time Inventory Demand Order Revenue
0 100 20 - 40
0 80 - 10 -10
1 90 20 - 40
1 70 - 50 -50
2 120 60 - 120
2 60 - 10 -10

Price= $2



Backtesting a policy

Time Inventory Demand Order Revenue
0 100 20 - 40
0 80 . 19- ¢0 —19--40
1 90- 7 20 20 - 40
1 20 100 - 5020 50 -20
2 120 60 - 120
2 60 - 10 -10

Price= $2
Cost= $1

Current order doesn'’t
impact future demand.

This allows us to

backtest!

Empirically, backlog due to
unmet demand does not look
significant.’

1. See Verhoef et al (2006)



Formalization of the Supply Chain Problem

 Growing literature around a class of MDPs where a large part of the state is driven by an exogenous noise
process [Efroni et al 2021, Sinclair et al 2022]

e A formalization of the model:
» Action a,: how much you buy

« Exogenous random variables: evolving under Pr and not dependent on our actions
(Demand;, Price,, Cost;, Lead Time,, Covariates;) := s,

 Controllable part (inventory) [.: evolution is dependent on our action.
e [, =max(/_,+a,_,—D,0) (and suppose we start at /).

» Reward is just the sum of profits: r(s,, /,, a,) := Price; X min(Demand,, /,) — Cost, X a,

 [earning setting:
 Data collection: We observe N historical trajectories, where each sequence is sampled sy, ..., 7 ~ Pr
 (Goal: maximize our cumulative reward over T periods



Causal Freeness

 ExoMDPs have a mapping to the classical Causality language

* |n the original construction, several random variables were defined

(Demand,, Price,, Cost,, Lead Time,, Covariates,) := s,

 And then an MDP was constructed on top of them

e That is all the state evolution and actions were defined as functions of these
variables



Causal Freeness

e \We could instead use a more measure-theoretic definition of causal freeness

* The spirit is similar to the augmentation construction of causality

AssuMPTION 1 (Causally free). Let F! be the sequence of sigma fields generated by all the
random variables up to time t, namely F! = o({D",p’,c.,v",a"},<;). Let G =a({D:,p’,c, v }oct),
namely the sigma field generated by everything that isn’t an action. We will say that D! is causally

free of 0 if

e (Vd) and (Vt) there exists a random variable F)'* which is F! measurable and
(0€O)  Pi(Di,, <dF) B

and
e D; , and the previous actions are conditionally independent, so D} , L {a’}s<¢|G: under all

measures P}.

Likewise we will assume that the price process p., the cost process c. and the vendor lead time

process v! are all causally free of 6.



Theorem: Backtesting in ExoMDPs

Theorem [M., Torkkola, Eisenach, Luo, Foster, Kakade '22]:
Suppose we have a set of K policies Il = {7, ...z}, and we have N sampled

exogenous paths. Then we can accurately backtest up to nearly K ~ N policies.

Formally, for any 0 € (0,1), with probability greater than 1 — 0 - we have that for all # € 11:

. log(K/d
Vo) — V) | < T\/ og(R79)

N
(assuming the reward r, is bounded by 1).

* |mplications:
 We can optimize a neural policy on the past data.
* |In the usual RL setting (not exogenous), we would have an amplification factor of (at least)
min{2’, K}, using historical data due to the counterfactual issue.

32



What do ExoMDPs buy us?

* |n classic (tabular) RL, we typically need the max error over states and actions
to be bounded:

max | P(s, a) — P([s, a)l|x < (1—7)%.

* |n an ExoMDP, if we were to use a generative model, we only need a good
average case prediction for the future:

N

l < . .

=1 N

log(K/o) )

* This allows us to avoid the counterfactual/causality issue



The Simulator

* (Collection of historical trajectories:
* 1 million products m
104 weeks of data per product

* Uncensoring:
 Vendor Lead Times

* Policy gradient methods in a “gym”:
 “gym” <> backtesting <> simulator

(note the “simulator” isn’t a good world model). m
* The policy can depend on many features.

(seasonality, holiday indicators, demand history,

product details, text features)




The Simulator

 “gym” < backtesting <> simulator
(note the “simulator” isn’t a good world model).

* The policy can depend on many features.
(seasonality, holiday indicators, demand history, product details,
text features)

* Note that the gym is not a true “simulator” in the usual sense
* |t does not simulate every possible starting state, only the
historical ones
* |t is a collection of diracs at the historical starting states

Different from optimal control, and traditional DeepRL



Differentiable Control Problem

* Note that each term of our state evolution is a differentiable function of
previous actions

* S0, we can take gradients directly from our Reward through our policy

* This is our current production policy, called DirectBackprop



Sim to Real Transfer

 Sim: the backtest of DirectBackprop improves on Newsvendor.
 Real: DirectBackprop significantly reduces inventory without significantly reducing

Real World

total revenue.

Periodwise Reward Statistics by Policy

e Metrics % change

Inventory Level -12+46
e Revenue 2.6%




lll: Multivariate Regression



The French Paradox

* French people eat “worse” than Americans
* Higher fat
* [hey drink wine
 [They smoke more

* Yet they live longer

e Why?



Is it red wine?

 Renaud (1991/1992) conjectured that it was the small amount of red wine they
consumed that caused this

e Hard to randomize this!

 So how do we get a causal effect?



Key issue in Causality: Lurking Variables

e |f Z causes X and Z causes Y, we see correlation but not causality between X
and Y

 \We can randomize X to break linkages

e Orif we know Z, we can control for Z \




The French Paradox

 When randomization is hard, problem becomes finding missing covariates
 Possible explanations:
* Wealthy people drink more red wine, being wealthy makes you live longer
* French people walk more, walking is the relevant covariate
* People who drink are more relaxed, being relaxed is the real win
* One solution:

 Multiple Regression



Should you drink a glass of red wine every night?

 Renaud’s (1991/1992) talk/paper considered
* Income
* Education
* French people in the US
 Americans in France....

* | read it and started drinking a glass of red wine every night!



Does the “Pearl” perspective add anything?

* | think what the Pearl| perspective gets right is that a causal model can only be
falsified (or fail to be falsified)

 What it gets wrong is that finding the variables in the graph is the hard
problem

 Consider an instrumental variable approach:

| 00—
O R,




A practitioners “recipe” for causality

 \WWe wanted to answer the question - “Does more inventory lead to more
demand?”

 Regress Demand on Inventory
e Then throw the kitchen sink of covariates

* |f the t-stat on the OLS coefficient doesn’t change, likely the variable is
“causal”



Spot the Error

 Taller people die younger (about 1 inch ner vear)

SCIENCE

* If you were tall, you were born T Wish I Was a Little Bit Shorter

The research is clear: Being tall is hazardous to your health.

* So the only tall people who di o
* Missing covariate was birth yea ’

» [aller people get paid more
» [aller people are second or third generation American

* Flynn Effect is working for them



Marshmallow Test

* Adolescents delaying gratification have better outcomes in life
 Missing covariate:

* Income

* Education
 Possible explanations:

» Parental investment

e Circumstances



When we can not do this?

* Pricing is an incredibly hard problem
 We want to understand how an x% change in price affects Amazon

 What happens if we randomize price every week

* People start gaming the price! .
o Strategic behavior through time means N
the response is not truly random - )

LLLLLL

AAAAAA



Causal Confusion in Imitation Learning

 [he example given:

Causal Confusion in Imitation Learning

* Scenario A: Image with Dashboard ar

Pim de Haan*', Dinesh Jayaraman'*, Sergey Levine'
*Qualcomm AI Research, University of Amsterdam,

e Scenario B: Image without Dashboart 'Berkeley Al Rescarch,  Facebook Al Rescarch
B does better than A (explanation is indicator light)

* |Implies “causal confusion” according to the paper



Causal Confusion in Imitation Learning

* |ncorrect causal reasoning!
o Causality isn’t the issue here, the issue is a trivially improvable error

 Mask out the dashboard indicator since there is already a redundant signal
from the break light

* According to them, this would be a strictly better model

 Thisisn’t “causality” - it’s a claim on a better model



Causal Confusion in Imitation Learning

* |ncorrect causal reasoning!

» |f past states and actions affect the
future, adding them as features
would be a trivially better model

 |f they merely confuse the model,
masking them out in the first layer
would be a trivially better model

Figure 2: Causal dynamics of imitation. Par-
ents of a node represent its causes.

« Simpler solution then graphs/
disagreement scores etc



Conclusion

* There are classes of RL problems that duck the issue of causality
* One can validate more complex causal models through a meta-analysis

o Causality is primarily about missing confounders, identifying them is the hard
problem

&\ )

Dominigue



